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Abstract
We introduce quantum hybrid gates that act on qudits of different dimensions.
In particular, we develop two representative two-qudit hybrid gates (SUM and
SWAP) and many-qudit hybrid Toffoli and Fredkin gates. We apply the hybrid
SUM gate to generating entanglement, and find that operator entanglement of
the SUM gate is equal to the entanglement generated by it for certain initial
states. We also show that the hybrid SUM gate acts as an automorphism on
the Pauli group for two qudits of different dimensions under certain conditions.
Finally, we describe a physical realization of these hybrid gates for spin systems.

PACS numbers: 03.67.Mn, 03.65.Ud, 03.67.Lx

1. Introduction

Although quantum computation is treated as processing qubits (quantum versions of binary
digits, or bits), quantum computing can be generalized by considering logical elements of
qudits (quantum versions of d-ary digits) [1]. Qubit-based quantum computation is adequate
for considering fundamental issues such as complexity classes or computability, but, from a
practical perspective, encoding as qudits may be more natural, or constitute a more efficient
use of resources [2]. For example, coupled harmonic oscillators can admit various qudit
encodings that exploit the full Hilbert space [2, 3].

Two-qudit gates have been treated, but so far always for two qudits of equal dimensions
[1]. Here we treat hybrid qudit gates, namely gates that transform two (or more) qudits of
possibly different dimensions. This analysis is particularly useful if two or more qudits of
different physical systems (and different dimensions) are coupled together (such as a d = 2
level system and a large d-dimensional qudit in an oscillator). We develop two- and multi-qudit
hybrid gates, discuss possible physical realizations and prove that the hybrid SUM gate acts
on the Pauli group for two qudits as an automorphism only when certain conditions on the
dimensions of the qudit Hilbert spaces are met.

0305-4470/03/102525+12$30.00 © 2003 IOP Publishing Ltd Printed in the UK 2525
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A qudit is a general state in a d-dimensional Hilbert space Hd , i.e. |�〉 = ∑d−1
m=0 cm|m〉,

which reduces to |ψ〉 = c0|0〉 + c1|1〉 for the qubit case. A basis for a general multi-qudit
system is given by

|m1〉 ⊗ |m2〉 ⊗ · · · ⊗ |mN 〉 ∈ Hd1 ⊗ Hd2 ⊗ · · · ⊗ HdN mi ∈ Zdi . (1)

If two or more di differ, we refer to the multi-qudit system (1) as ‘hybrid system’.
This generalization is illuminating because it differs subtly from standard non-hybrid

qudit models (see, e.g., lemma 2 in section 5). Moreover, hybrid systems have a wider range
of applications. For example, a qubit can serve as a control state with any qudit as the target
state, or vice versa. Also qubits are often only ideals: many systems involve multiple levels
for each degree of freedom, and the qubit is encoded into these levels. The theory for hybrid
qudit systems can be useful for different interacting physical systems, with a d1-dimensional
qudit natural for one system and a d2-dimensional qudit natural for another.

This paper is organized as follows. In section 2 we first review the qudit computational
basis and one-qudit operators. Then we construct two hybrid versions of the SUM gate (see
equations (9) and (14) [2–4], a partial-SWAP gate and a hybrid version of the Toffoli [5–9] and
Fredkin gates [10–14] that were instrumental in introducing the field of reversible (classical)
computation. In section 3 we calculate the operator entanglement of the SUM gate and the
entanglement generated by the SUM gate. In section 4 we describe a realization of the hybrid
gates by spin systems. In section 5 we prove a lemma that shows the SUM gate yields an
automorphism of the Pauli group by conjugation, if and only if the dimension of the control
system is a multiple of that of the target system. We conclude in section 6.

2. Hybrid quantum gates

2.1. Generalized Pauli group

A basis for operators on Hd is given by the following ‘generalized Pauli operators’ [2, 3,
15, 16]:

XjZk j, k ∈ Zd (2)

where X and Z are defined by their action on the computational basis

X|s〉 = |s + 1(mod d)〉 (3)

Z|s〉 = exp(2π is/d)|s〉 = ζ sd |s〉 (4)

where

ζd ≡ exp(i2π/d). (5)

In the following we shall write for simplicity ζ instead of ζd , if the dimension is easily
understood from the context.

The unitary operators X and Z generate the generalized Pauli group Pd . Note that X and
Z do not commute; they obey

ZjXk = ζ jkXkZj (6)

and Xd = Zd = I.
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2.2. One-qudit gates

Before we consider two-qudit gates, we review some of the properties of the useful one-qudit
‘Fourier gate’ F, which transfers the qudit computational basis |s〉 to the dual state

|s) ≡ F |s〉 := 1√
d

d−1∑
k=0

ζ sk|k〉 for s ∈ Zd (7)

such that 〈s′|s) = 1/
√
dζ ss

′
. These dual states are related to the computational basis by

a discrete Fourier transformation, and distinguished by a rounded bra/ket notation. As an
example, if the computational basis corresponds to Fock number states for the harmonic
oscillator, the dual basis corresponds to Susskind–Glogower phase states [17]. Similarly, the
SU(2) phase states are dual to angular momentum eigenstates [18].

The F gate is a qudit version of the one-qubit Hadamard gate H. However, and in contrast
to H, the F operator for d � 3 is not Hermitian and its order is 4 instead of 2, as [19]

F 2|s〉 = |−s〉 F 4 = I. (8)

Similarly, the unitary operator X can be considered as the qudit version of the NOT gate, and
Z is the qudit version of the phase gate for qubits.

2.3. Two-qudit gates

2.3.1. Hybrid SUM gate. Two representative quantum gates on qubits are the controlled-
NOT (CNOT) and SWAP gate. A generalized CNOT gate for qudits [2, 3, 20] has been called
the displacement gate, or SUM gate [20]. As a compromise, we refer to the hybrid version
of this ‘controlled-SHIFT’ operator as the ‘SUM gate’, but use the notation D to emphasize
its displacement nature. To achieve unity in the notation, we shall use calligraphic letters to
denote two- and multi-qudit gates. In particular, we shall use S, T and F to denote the SWAP,
the hybrid Toffoli and Fredkin gates, respectively.

We now define the hybrid version of the SUM or displacement gate D on Hdc ⊗ Hdt for
arbitrary dc and dt (the subscript c refers to ‘control’ and t to ‘target’) by

D :=
dc−1∑
n=0

Pn ⊗Xn for dc, dt ∈ N (9)

where

Pn ≡ |n〉〈n| n ∈ Zdc (10)

is a primitive projection operator on a computational basis state of the control space Hdc .
It is important to note the following subtle difference between hybrid and non-hybrid

qudit systems: although the states |i〉 ⊗ |j 〉 and |i + dc〉 ⊗ |j 〉 are formally equivalent, the
operators Pi ⊗ Xi = |i〉〈i| ⊗ Xi and Pi+dc ⊗ Xi+dc = |i + dc〉〈i + dc| ⊗ Xi+dc = Pi ⊗ Xi+dc

are not equal in general, if dc �= dt . Hence, in order to obtain a unique definition, we insist
that the summation in (9) is restricted to 0 � n < dc. This subtle difference has interesting
consequences when we try to define a SWAP gate for hybrid systems.

We can combine together all the projection operators Pn, which yield the same Xs , and
obtain

D =
dt−1∑
s=0

�s ⊗Xs for dc > dt (11)
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where

�s =
dc−1∑

n=s mod dc

Pn for s ∈ Zdt . (12)

For example, the SUM gate for dc = 3 and dt = 2 is given by

D =
1∑
s=0

�s ⊗Xs = �0 ⊗ I +�1 ⊗X

where�0 = P0 + P2 and �1 = P1.
We can extend expression (11), also for dc � dt , by defining

D :=
dmin−1∑
s=0

�s ⊗Xs (13)

where dmin := min(dc, dt ). Note that
∑dmin−1

s=0 �s = Idc×dc .
We introduce another interesting hybrid gate:

D′
12|m〉 ⊗ |n〉 := |m〉 ⊗ |m− n〉 for m ∈ Zdc and n ∈ Zdt . (14)

This operator is unitary and Hermitian, as (D′
12)

2 = I . It is related to the SUM gate by

D′
12 = D12(I ⊗ F 2).

For dc = dt our hybrid D′
12 reduces to the generalized CNOT gate given by Alber et al [4].

2.3.2. The SWAP gate. The SWAP operation on Hd × Hd systems, i.e. for dc = dt = d

systems, is defined by

S|i〉 ⊗ |j 〉 = |j 〉 ⊗ |i〉 for i, j ∈ Zd (15)

hence, S = ∑d−1
i,j=0 |j 〉〈i| ⊗ |i〉〈j |. Clearly, the definition cannot be used for hybrid systems.

Instead, for dc �= dt (and also for dc = dt ) we define partial-SWAP operators by

SP |i〉 ⊗ |j 〉 =
{|j 〉 ⊗ |i〉 for i, j ∈ ZdP

|i〉 ⊗ |j 〉 otherwise
(16)

where dP � dmin = min(dc, dt ). Obviously, SP in (16) is unitary and Hermitian, as S2
P = I .

This partial SWAP gate only acts as a SWAP operation on a subspace of the original Hilbert
space.

2.3.3. Relation between SWAP and SUM operators. It is easy to check that S can be written
in terms of three SUM gates as follows:

S = (F 2 ⊗ I)D12D−1
21 D12. (17)

Another possibility is to use expressions (17) formally to define a swap-like gate for hybrid
system. However, contrary to what one might expect, this operator does not yield a swap
operation, even for 0 � i, j � dmin.

We illustrate this claim by a simple example, where d1 = 3 and d2 = 2. By applying
expression (17) to the state |0〉 ⊗ |1〉, we obtain successively

|0〉 ⊗ |1〉 −→ |0〉 ⊗ |1〉 −→ |2〉 ⊗ |1〉
−→ |2〉 ⊗ |1〉 −→ |1〉 ⊗ |1〉 �= |1〉 ⊗ |0〉. (18)

Recently, Fujii constructed a swap gate as follows [21]:

S = D12(F
2 ⊗ I)D21(F

2 ⊗ I)D12(I ⊗ F 2) (19)
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expressed in our notation. Note that both constructions of SWAP gates actually require three
SUM gates and three local F 2 gates. This is because

D−1
21 = (I ⊗ F 2)D21(I ⊗ F 2) (20)

so that our SWAP gate (17) can be written as

S = (F 2 ⊗ I)D12(I ⊗ F 2)D21(I ⊗ F 2)D12. (21)

We also note that the SWAP gate on continuous variables can be constructed by three
generalized controlled-NOT gates on continuous variables [22].

2.4. Higher-order quantum hybrid gates

Representative higher-order three-qubit gates include the quantum versions of the Toffoli
gate [5–9] and of the Fredkin gate [10–14]; these three-bit gates are important primitives for
logically reversible classical computation, for which universal reversible two-bit gates do not
exist. The Toffoli gate is effectively a controlled-controlled-NOT (C2 NOT), and the Fredkin
gate is another universal three-bit gate.

As a controlled-controlled-NOT, the quantum Toffoli gate has two qubits as control and
one qubit as target, and the target qubit flips if and only if the two control qubits are in the
state |1〉 ⊗ |1〉. The Fredkin gate has one qubit as control and two qubits as target, and the
states of two target qubits swap if and only if the control qubit is in the state |1〉. Here we give
the hybrid version of these two higher-order gates.

2.4.1. The hybrid Toffoli gate. A general controlled unitary gate acting on Hilbert spaces
Hdc ⊗ Hdt can be written as

CU =
dc−1∑
s=0

Ps ⊗ Us =
dc−1∑
s=0

|s〉〈s| ⊗ Us (22)

where Us are arbitrary unitary operators on the target space Hdt .
Note that {Us} may be unitary operators on single or multiple qudits, and may include the

case of qudit-controlled operators on other qudits. The latter case allows unitary operators on
qudits that can be jointly controlled by two or more qudits. An example is provided by the
following ‘natural’ generalization of the Toffoli gate [5–9]:

T :=
dc−1∑
s=0

Ps ⊗ Ds (23)

where the Us in (22) are replaced by Ds , which are powers of the generalized displacement
operator (9). The hybrid Toffoli-type gate is thus a ‘triple gate’

T =
dc−1∑
r=0

d ′
c−1∑
s=0

Pr ⊗ Ps ⊗Xrs =
dt−1∑
m=0

�m ⊗Xm (24)

where�m are compound projection operators, given by

�m =
dc−1∑
r=0

d ′
c−1∑
s=0

δm,rsPr ⊗ Ps m ∈ Zdt (25)

where the products rs of the delta in (25) are defined modulo dt . Hence, the order of the
Toffoli gate is equal to dt .
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2.4.2. The hybrid Fredkin gate. Another type of multi-qudit gate is the quantum Fredkin
gate [10–14]. We define the hybrid Fredkin gate on Hdc ⊗ Hd1 ⊗ Hd2 by

F :=
dc−1∑
m=0

Pm ⊗ SmP = �+ ⊗ I +�− ⊗ SP (26)

where�± are the following projection operators:

�+ :=
∑

evenm

Pm and �− :=
∑
oddm

Pm (27)

where we have used the property S2
P = I .

The hybrid Fredkin gate executes a swap for purely odd state |ψ−〉, i.e. for �−|ψ−〉 =
|ψ−〉, and does nothing for the even states. However, for mixed odd and even states, one
obtains a mixed result. For instance, if we choose a input state as (|0〉 + |1〉)⊗ |α〉 ⊗ |β〉, the
output state after the gate is |0〉⊗ |α〉⊗ |β〉 + |1〉⊗ |β〉⊗ |α〉, which is in general an entangled
state.

3. Entanglement produced by quantum gates

Hybrid two- and multi-qudit gates can enhance entanglement, i.e. the entanglement of the
output state can be greater than that of the input state. In this case we regard the hybrid
gates as entangling gates. Different methods exist for characterizing the enhancement of
entanglement. In this section, we discuss entanglement enhancement by the hybrid SUM gate.

3.1. Entanglement measures for states and operators

There are various measures of entanglement for a normalized state |ψ〉 ∈ Hd1 ⊗ Hd2 . Here,
we shall use the von Neumann entropy

E(|ψ〉) = −
NS−1∑
n=0

pn logpn (28)

where {pn} is defined in terms of the Schmidt decomposition of |ψ〉:

|ψ〉 =
NS−1∑
n=0

√
pn|φn〉 ⊗ |χn〉 pn > 0 ∀n (29)

and log is always taken to be base 2. Definition (28) was adapted [23, 24] to define operator
entanglement, as follows. Let Q be an operator acting on a hybrid space Hd1 ⊗ Hd2 , with the
following Schmidt decomposition [24]:

Q =
NS−1∑
n=0

snAn ⊗ Bn (30)

with sn > 0 ∀n, and the two operatorsAn and Bn are orthonormal with respect to the Hilbert–
Schmidt scalar product defined by 〈A,B〉 := tr(A†B) for A and B two arbitrary operators. In
particular, ‖A‖ :=

√
tr(A†A) is the Hilbert–Schmidt norm of the operatorA, and Â := A/‖A‖

if ‖A‖ �= 0.
Since linear operators over a finite-dimensional vector space Hd can be regarded as d2-

dimensional vectors, we may think of Q̂ ≡ Q/‖Q‖ as a normalized state, which we denote by
|Q̂〉〉, so that (30) becomes

|Q̂〉〉 =
NS−1∑
n=0

√
pn|An〉〉 ⊗ |Bn〉〉 (31)
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where
√
pn = sn/‖Q‖ . In particular, if Q is unitary, then ‖Q‖ = √

dcdt . The operator
entanglement [24]

Eop(Q) = −
∑
n

s2
n

dcdt
log

(
s2
n

dcdt

)
. (32)

3.2. Operator entanglement of the SUM gate

In section 2, we essentially obtained in equation (13) the Schmidt decomposition of the
operator D because the projection operators �s and the unitary operators Xs are mutually
orthogonal, i.e.

〈�r,�s〉 = ‖�s‖2δr,s r, s ∈ Zdmin (33)

〈Xr,Xs〉 = ‖Xs‖2δr,s = dtδr,s r, s ∈ Zdt (34)

where we used ‖Xs‖2 = tr(Xs†Xs) = tr I = dt , because Xs is unitary. Hence, by dividing
the operators�s andXs in (13) by their norms, we immediately obtain the following Schmidt
decomposition of D:

D :=
dmin−1∑
s=0

(‖�s‖
√
dt)�̂s ⊗ X̂s (35)

where for dc = Kdt + r we have

‖�s‖ =
{√

K + 1 (0 � s � r − 1)√
K (r � s � dt − 1).

(36)

From equations (35) and (36), expression (31) yields immediately

Eop(D) = eD(dc, dt ) (37)

where (for dc = Kdt + r)

eD(dc, dt ) = −r K + 1

dc
log

K + 1

dc
− (dt − r)

K

dc
log

K

dc
. (38)

Note that for dc < dt the general expression (38) reduces simply to

eD(dc, dt ) = log dc for dc < dt (39)

by substituting K = 0 and r = dc.

3.3. Entanglement produced by the SUM gate

We prove the following lemma:

Lemma 1. The entanglements generated by the hybrid SUM gate D on the following three
initial product states (one without and two with ancillas)

|�1〉 ≡ |γ 〉 ⊗ |t〉 =
(

1√
dc

dc−1∑
m=0

|m〉
)

⊗ |t〉 (40)

|�2〉 ≡ |α〉 ⊗ |t〉 =
(

1√
dc

dc−1∑
m=0

|m〉 ⊗ |m〉
)

⊗ |t〉 (41)
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|�3〉 ≡ |α〉 ⊗ |β〉 = |α〉 ⊗
(

1√
dt

dt−1∑
n=0

|n〉 ⊗ |n〉
)

(42)

where |t〉 is any of the computational states of the target space, are equal to the operator
entanglement (38) of D, i.e.

E(D|�k〉) = Eop(D) = eD(dc, dt ). (43)

Proof. The three initial states have zero entanglement, since they were chosen to be product
states. Therefore, the increase of entanglement due to D is equal to E(D|�k〉).

We shall now apply D to (40):

∣∣�f

1

〉 ≡ D|γ 〉 ⊗ |t〉 = 1√
dc

dmin−1∑
s=0

dc−1∑
m=0

�s |m〉 ⊗Xs |t〉. (44)

Let dc = Kdt + r (note that K = 0 and r = dc if dc < dt ). Hence,

dmin−1∑
m=0

�s |m〉 =
{

|s〉 + |s + dt〉 + · · · + |s +Kdt〉 = √
K + 1|ψs〉 for 0 � s � r − 1

|s〉 + · · · + |s + (K − 1)dt〉 = √
K|ψs〉 for r � s � dt − 1

(45)

where the |ψs〉, s ∈ Zdmin , are orthonormal states which, for dt < dc, span a dt -dimensional
subspace of Hdc . By substituting (45) into (44), we obtain the following Schmidt
decomposition of the final state:

∣∣�f

1

〉 = D|γ 〉 ⊗ |t〉 =
dc−1∑
s=0

√
ps |ψs〉 ⊗ |t + s〉 (46)

where

ps =
{
(K + 1)/dc for 0 � s � r − 1
K/dc for r � s � dt − 1.

(47)

By substituting the above equation into (29) we obtain exactly the same expression
(38). Similarly, we can prove that the entanglement of E(D|α〉 ⊗ |t〉) is also given
by (38).

Finally, since the states {Xs |β〉} are orthonormal for different s, we get essentially the
same Schmidt decomposition for D|α〉|β〉 as in (46), and hence the same final entanglement.
This result also follows from lemma 5 of [24]. �

The entanglement function (38) is plotted in figure 1. As the generated entanglement
equals the operator entanglement according to equation (43), figure 1 presents E as the
ordinate axis. We observe in figure 1 that the entanglement approaches log2 dt as dc becomes
large. We can see this asymptotic result in equation (38) by noting that

K + 1

dc
= dc + dt − r

dcdt
→ 1

dt

so the entanglement asymptotically approaches log dt as observed in figure 1.
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Figure 1. The operator entanglement of the hybrid SUM gate for different dc and dt .

4. Physical realization of hybrid gates

One can encode a qudit in physical systems such as spin systems and harmonic oscillators
[2]. The Hilbert space associated with a spin-j system is spanned by the basis {|j,m〉;m =
−j, . . . , j } and the su(2) algebra is generated by {Jx, Jy, Jz}, with [Jx, Jy] = iJz etc and(
J 2
x + J 2

y + J 2
z

)|j,m〉 = j (j + 1)|j,m〉. It is natural to define a number operator N and number
states as follows:

N := Jz + jI (48)

|n〉j := |n− j 〉 (n = 0, . . . , 2j). (49)

Then we have N |n〉j = n|n〉j . In the spin system the operators X and Z are realized as

X =
2j∑
n=0

|n + 1〉jj 〈n| (50)

Z = exp[i2πN/(2j + 1)]. (51)

4.1. Controlled-phase and SUM gates

We consider interaction between spin-j1 and spin-j2 systems, via the Hamiltonian H =
−gJczJtz. Up to local unitary operators the evolution operator exp(itgJczJtz) is equivalent
to U(t) = exp(itgNcNt ). By choosing tg = 2π/(2jt + 1) = 2π/dt , we obtain the unitary
operator

V = exp

[
i
2π

dt
NcNt

]
= ζ

NcNt
dt

(52)

which is just the controlled-phase gate [3]. On the other hand, we know that the SUM gate
can be obtained from the controlled-phase gate as follows [25]:

D = (I ⊗ F †)ζNcNtdt
(I ⊗ F). (53)

Therefore, with the aid of F gate we realized the hybrid SUM gate.
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4.2. Toffoli gate

Now let us see how to physically create a hybrid Toffoli gate. It is shown in [9, 26] that the
interaction Hamiltonian N1N2N3 (Ni correspond to spin-ji and one ji is equal to 1/2) arises
in ion-trap systems when coupling these operators Ni to a common continuous variable. The
dimension of a spin-ji system is given by di = 2ji + 1. Therefore, we have the three-body
controlled-phase gate

W(θ) = eiθN1N2N3 . (54)

By choosing, say, θ = 2π/d3, we make Hd3 the target space while Hd1 ⊗ Hd2 becomes
the control space. Then, by appending the appropriate F gate on the target system, we can
realize the Toffoli gate acting on the systems Hd1 ⊗ Hd2 ⊗ Hd3 .

4.3. Fredkin gate

As a final remark we point out that we can construct a control-SWAP gate that acts on
Hd⊗H∞ ⊗H∞ as a generalization of the controlled-SWAP gate acting on the H2 ⊗H∞ ⊗H∞
system [22].

The SWAP gate between two bosonic modes a1 and a2 is given by [22]

S12 = eiπa†2a2 e
π
2 (a

†
1a2−a†2a1). (55)

In an ion-trap system we can couple the spin-j system to two bosonic modes ai (i = 1, 2) as
[27, 28]

Hi = χNa
†
i ai . (56)

Since operatorsHi commute with each other, we can simulate the following Hamiltonian:

H = H1 −H2 = χN(a
†
1a1 − a

†
2a2) = 2χNJz (57)

where Jz = 1
2 (a

†
1a1 −a†2a2). The operators Jz and J+ = a

†
1a2 = J

†
− form the su(2) Lie algebra.

The evolution operator of the Hamiltonian H at time t = −π/2χ is given by

U = U(−π/2χ) = eiπJzN . (58)

The evolution operator U can be transformed to U ′ as

U ′ = ei π2 JxU e−i π2 Jx = eiπJyN = e
π
2 N(a

†
1a2−a†2a1) (59)

where Jx = (J+ + J−)/2 and Jy = (J+ − J−)/(2i). From equations (55), (56) and (59), we
construct the controlled-SWAP gate (hybrid Fredkin gate) as

F = eiπa†2a2N ei π4 (a
†
1a2+a†2a1) ei π2 a

†
1a1N e−i π2 a

†
2a2N e−i π4 (a

†
1a2+a†2a1) = SN . (60)

Therefore we have provided a controlled-SWAP gate on Hd ⊗H∞ ⊗H∞ systems in terms of
five two-body operators.

5. Conjugation by the SUM gate

A conjugation by the SUM gate D is described by the following lemma:

Lemma 2. The hybrid SUM gate D yields, by conjugation, an automorphism of the Pauli
group Pdc ⊗ Pdt , iff dc/dt is an integer K. More explicitly,

D(X ⊗ I)D† = X ⊗X (61)

D(I ⊗X)D† = I ⊗X (62)
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D(Z ⊗ I)D† = Z ⊗X (63)

D(I ⊗ Z)D† =
(
dc−1∑
s=0

ζ
−sdc/dt
dc

Ps

)
⊗ Z (64)

= Z−K ⊗ Z for
dc

dt
= K. (65)

Proof. By noting that

PrXPs = Pr |s + 1〉〈s| = |s + 1〉〈s|δr,s+1 (66)

we obtain

D(X ⊗Xk)D† =
dc−1∑
s=0

PrXPs ⊗Xr+k−s = X ⊗Xk+1. (67)

This proves both (61) and (62) simultaneously. By noting that Zj = ∑d−1
s=0 ζ

sj

d Ps , we get

D(Z ⊗ I)D† =
dc−1∑
r,s,t=0

ζ sdcPrPsPt ⊗Xr−t = Z ⊗ I. (68)

Finally, by using the commutation relation (6) and ζdt = (
ζdc
)dc/dt , we obtain

D(I ⊗ Z)D† =
dc−1∑
s=0

Ps ⊗XsZX−s =
dc−1∑
s=0

Ps ⊗ ζ−s
dt
Z =

dc−1∑
s=0

ζ
−sdc/dt
dc

Ps ⊗ Z (69)

= Z−K ⊗ Z for dc = Kdt . (70)

�

Note that even if dc/dt = K � 2 is an integer, then D12 but not D21 will belong to the
Clifford algebra of the hybrid Pauli group.

6. Summary

We considered quantum hybrid gates which act on tensor products of qudits of different
dimensions. In particular, we constructed two-body hybrid SUM and partial-SWAP gates,
and also many-body hybrid Toffoli and Fredkin gates. We have calculated the entanglement
generated by the SUM gate. We describe a physical realization of these hybrid gates for
spin systems. We also proved two lemmas, one related to entanglement generation with and
without ancillas, and the other involving conjugation by the SUM gate.
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